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Uniaxial nematic phase in fluids of biaxial particles 

by B. BERGERSEN 
Department of Physics, The University of British Columbia, 

Vancouver, B.C. Canada V6T 1W5 

P. PALFFY-MUHORAY 
Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, U.S.A. 

and D. A. DUNMUR 
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(Received 20 Februury 1987; accepted IS October I987) 

We construct a mean field theory for fluids of biaxial particles interacting via 
London-van der Waals interactions. This model is shown to belong to a class of 
systems previously studied by Straley. In the special case when the psueodpotential 
can be constructed from the invariants of the dielectric susceptibility tensor, the 
model is shown to be equivalent to that of Freiser and others. A discussion is given 
of the difference between molecular properties, as obtained in N.M.R. experiments, 
and bulk properties. 

In the absence of external fields, most thermotropic nematics exhibit only bulk 
uniaxial phases, although biaxial phases have been observed in lyotropics [ l ,  21. Very 
recently, a biaxial phase has been observed [3] in  a thermotropic material and also in 
long chain polymers with nematogenic side groups [4]. Even for uniaxial phases, while 
bulk properties such as the dielectric and magnetic susceptibilities are uniaxial, 
molecular properties of the constituents do not typically have cylindrical symmetry. 

In the case of N.M.R., where one measures the orientation of molecular segments, 
biaxial distributions have been observed for some time [5]. There has been some 
controversy as to whether the dominant mechanism for this is molecular biaxiality [5] 
or flexibility [6]. A recent study of molecular biaxiality of a dilute solute using U.V. 
spectroscopy is that of Averyanov et al. [7], while we refer to Emsley et al. [8] for similar 
phenomena using N.M.R. A theory which concentrates on the effects of conformational 
averaging of flexible molecules has been presented by Emsley et al. [9]. We wish here 
to re-examine the role of biaxiality in rigid molecules. 

The very successful and simple mean field theory of Maier and Saupe [ 101 assumes 
that the molecules have cylindrical symmetry, and for this reason their theory 
only predicts a uniaxial phase. In an elegant paper, Straley [ l  I ]  constructed a general 
mean field theory for particles without cylindrical symmetry. He obtained both biaxial 
and uniaxial solutions, with a biaxial regime separating rod- and disk-like uniaxial 
phases. In this molecular field approach three anisotropy interaction parameters are 
introduced. In an alternative Landau approach [12,13] 11 parameters were used. 
On the other hand, if the intermolecular interaction is expressible in terms of the 
three principal molecular polarisabilities, two parameters will describe the anisotropy. 
We construct a formalism for the case where the dominant interaction is of the 
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London-van der Waals type. In the most general case our results are equivalent to 
those of Straley [ I  I ] .  Under certain assumptions only two anisotropy parameters are 
required. We give criteria when this is allowed, and in this case our theory becomes 
equivalent to that of Freiser [I41 and Remler and Haymet [ I  51. The order parameters 
of Remlet and Haymet [ 1 S ]  are linear combinations of the molecular order parameters. 
We therefore find it  useful to calculate the temperature dependence of each of the two 
molecular order parameters in the bulk uniaxial phase. 

Let a, (i = 1,  2, 3) be the molecular polarizabilities along the three principal 
molecular axes. We generalize the isotropic case considered by Kittel[16] and take this 
polarizability to be due to three orthogonal harmonic oscillators with characteristic 
frequencies 0,. The London-van der Waals force between the two molecules a and 
h will then be of the form 

(1) 
h 

4rj' I 
lJrh = - - c (01, + w 1 ) a , a 1 ( 3 ( L ~  - R)(L,h - R) - Lr * Lf)' 

Here R is a unit vector in the direction of the intermolecular vector r. L:' is a unit 
vector in one of the principal directions of the molecular polarizability. We use Greek 
indices to describe components of these vectors in the laboratory frame and employ 
the summation convention for repeated Greek indices. We define 

Gfly = i(3RllR;. - dl17)/r3, 
and rewrite equation ( I )  

q,h = - h  2 (mi + O l ) M i ~ j L ~ / J L ~ , l L ~ ~ , L ~ ~ G l l , , ~ ~ , , , .  ( 3 )  
i /  

In the spirit of the Maier-Saupe theory [lo], we make the approximation that the 
spatial and orientational parts of the pair distribution function are decoupled. Then 

(G/j,,G;,,,) = Qh(3d/~;,d,,,. - 2d,j,,a;,,, f 3dfiVd,,:), (4) 

with h a constant (of dimension inverse volume per particle) and Q is the number 
density. We define 

a;i,(a) = 1[3L:)JLi1, - djkd/k], (5) 

s;;, = (o;;.). (6) 

with the corresponding order parameter tensor 

We get for the spatially averaged pair interaction 

(7) 

where A, = cxlwl. In mean field theory one averages over orientation of particle h to 
obtain the single particlc orientational pseudopotential 

Qhh 
c = - - c q, ( A &  + a ,A , )S ' ;  

9 ,  I 
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In the principal axis frame of the order parameter tensor S/&, the anisotropic part of 
the susceptibility tensor is given by 

/ -t(Q - PI 

: (Q + PI 

Q 

where 

Equation (10) shows that even for uniaxial samples ( P  = C = 0) different sus- 
ceptibilities will exhibit different temperature dependencies (the experimental 
evidence for this has been recently reviewed by Bunning et ul. [17]). We note that, in 
principle, it should be possible to extract the temperature dependence of Q and 
D from independent measurements of, say, the dielectric and magnetic susceptibilities. 
Equation (10) and its implications do not appear to be generally known in the 
literature. The order parameters Q, P, C and D are related to S, T, U and V of Straley 
[lo] by Q = S,  P = 3/2T, D = 3/2U, C = 3V. 

We get for the orientational pseudopotential in the principal axis frame 

E = -$ebA(a, - @ ) ( A ,  - A)($(3Qq + Pp) - +(S + A)+(3Qd + PC + 3Dq + Cp) 

+ +(6A)(3Dd + Cc)), (15) 

where 
A ?  - A ,  A =  6 =  

3 ( A ,  - A)’ 
The relevant part of the free energy per particle then becomes 

22 - CI, 

3 ( E ,  - E ) .  

The prefactor, 6 and A are in principle independent parameters and the pseudo- 
potential (equation ( 1  5)) is of the general form suggested by Straley [ 1 I]. In his book 
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3 50 B. Bergersen et al. 

de Gennes [18] argued that the free energy should be expressible in terms of the 
invariants of the susceptibility tensor (10) which has two independent anisotropy 
parameters. We note that this is only possible if the three characteristic frequencies 
in equation (1) take on the same value wi = oo. Then Ai = w0a, and 6 = A, and our 
model becomes equivalent to that of Freiser [ 141. Although the interactions responsible 
for liquid-crystalline behaviour will differ from equation (1) (we have omitted steric 
effects), our argument demonstrates that in general three anisotropy parameters are 
needed to describe the interaction between rigid biaxial particles in mean field theory. 

The Landau expansion in the special case 6 = A has been studied by Freiser [ 141. 
He showed that for 6 = 1/3 (which in our model corresponds to one of the principal 
susceptibilities being equal to the mean susceptibility) there is a critical point. This 
point is the end point of two second order lines separating the biaxial phase from 
rod-like and disk-like nematic phases. In the general case 6 # A the Landau expansion 
becomes more complicated and we plan to discuss this question elsewhere. We 
mention, however, that when account is taken of the fact that the density may change 
at the transition, the uniaxial to biaxial transition may be first order. The uniaxial- 
biaxial transition in a rod-disk mixture was recenty found [I91 to be first order for 
similar reasons. 

Recently, the Freiser model has been studied by Remler and Haymet [ 151. They 
considered a pseudopotential of the form 

where, in the principal axis frame, the order parameter can be written 

with 
= Q +  SD = ( q +  b d )  = ( o ) ,  

A = P +  6C = ( p  + b c )  = (A>. 
The order parameters of Remler and Haymet [IS] are A, = R and 

2A 
3(1 + 26)’ 

A, = 

while their anisotropy parameter is r = (3/2)”26. We note that the order parameters 
Cl and A contain the material constant 6 which is different for different types of 
susceptibility. We have therefore found it useful to recalculate Q and D for the special 
case 6 = A. We have solved the self-consistent equations which result from minimizing 
the free energy. 

These integrals were expressed as single integrals over complex error functions, 
and were evaluated using an adaptive Romberg routine. The temperature dependence 
of the order parameters Q and D defined in equations (1 I )  and (13) is shown in the 
figure for the same values of the anisotropy parameter. The transition temperature 
increases with 6 if u = 3~hho,(u, - a)  is kept constant. This differs from [15], where 
a different unit of temperature is used. 
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Temperature dependence of the order parameters Q and D for 6 = 0 (full curve), 6 = 0.1633 
(dotted curve, this value of 6 corresponding to r = 0.2 in [14]), and 6 = 0.25 (chained 
curve). The upper curves represent the order parameter Q, the lower curves plot D. 

The susceptibility (equation ( I  0)) for biaxial particles contains two order parameters 
even in the bulk uniaxial case. For this reason the anisotropy associated with different 
susceptibilities will exhibit different temperature dependencies. This may account, at 
least in part, for the observed difference in temperature dependence of magnetic and 
electric susceptibilities (birefringence) [ 171. Similarly, the ratio (& - S,.,.)/S,, depends 
on temperature even in the case of rigid biaxial molecules in qualitative agreement 
with recent results of Wu et al. [20]. 

We have shown by a counter example that the free energy is not in general 
expressible in terms of the invariants of a single susceptibility. We have thus explained 
the difference between the more general formulation of Straley [l 11 and that Freiser 
~ 4 1 .  
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